Hercules Series

24x Port D38999 Optical Transceiver, GbE, FC, ARINC 818 or sFPDP Applications, Multimode, 850nM

24xTX and 24xRX, Flange Mount FEATURES

- Suitable for GbE, Fibre Channel, ARINC 818 and sFPDP applications at up to 5.0Gbps per fiber port
- Optical fiber link distances up to 550 Meters (50/125 μ 2000MHz*Km MMF)
- Maximum optical channel bit error rate less than 1x10⁻¹²
- Operating temperature range from -55°C to +85°C
- Shock, vibration and immersion resistant per RTCA / D0-160E • Aluminum alloy D38999 housings are strong, durable, corrosion
- resistant and light weight
- D38999 Receptacle housing embedded with MT fiber optic connectors

APPLICATIONS

Hercules series bulkhead mounted optical transceivers enable extremely high speed network communications over long distances in harsh environments.

- Gigabit Ethernet switches and peripherals
- Fibre Channel switches and peripherals
- Video displays and display drivers
- · High speed sensor data links

The D38999 shell provides a sealed optical interface that is water-tight to IP68 / NEMA-4x when mated.

The multimode optical fiber interface supports applications where copper cable link distance, bandwidth, weight or bulk make the use of twisted pair, twinax or quadrax copper conductors unacceptable.

Up to 24xTX and 24xRX lines operating from 0.05 to 5.0Gbps

DESCRIPTION

Hercules series 24 port (48 fiber) optoelectronic transceivers consist of up to 24 total optical transmitter and receiver functions integrated into a bulkhead mounted D38999 / Size 21 receptacle connector. The optical transmitters are 850nm VCSEL lasers. The transmitter input lines are driven with differential CML signals applied to the transmitter (TX+ and TX-) lines. Dual loop, temperature compensated, VCSEL drivers convert the transmitter input signals to suitable VCSEL bias and modulation currents.

The optical receivers consist of PIN and preamplifi er assemblies and limiting post-amplifiers. Outputs from the receivers consist of differential CML data signals on the receiver (RX+ and RX-) lines and single ended CMOS indicator functions on the Loss of Signal (LOS) lines. The receiver data lines are squelched upon LOS assertion, preventing errant data generation when an invalid incoming optical signal is presented to the transceiver.

The electrical interface to the Hercules series optical fiber transceivers is a controlled impedance Samtec connector enabling interface to a ribbon coax or twinax cable or flexible printed circuit assembly.

Hercules series 24 port optical fiber transceivers are vibration isolated, environmentally hardened components designed for use in harsh environment applications.

- •Panel mounted D38999 interface sealed against liquid and solid contaminants
- · Shock and vibration resistant

ORDERING INFORMATION

Application	Part Number
24xTX/RX	T38M-2424-HW

Hercules Series D38999 Optical Transceiver,

Gigabit Ethernet, Fibre Channel, ARINC 818 Applications, Multimode, 850nM

ABSOLUTE MAXIMUM RATINGS

Absolute maximum limits mean that no catastrophic damage will occur if the product is subjected to these ratings for short periods, provided each limiting parameter is in isolation and all other parameters have values within the performance specification. It should not be assumed that limiting values of more than one parameter can be applied to the product at the same time.

Parameter	Symbol	Minimum	Typical	Maximum	Unit
Storage Temperature	Τ _s	-55		+100	°C
Supply Voltage	V _{cc}	-0.5		+4.5	V
RX Output Current	I _o			50	mA
Differential Input Voltage (p-p)	V _D			2.2	V

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Minimum	Typical	Maximum	Unit
Operating Temperature	T _A	-55		+85	°C
Power Supply Voltage	V _{cc}	+3.135		+3.465	V
TX Common Mode Voltage	V _{CM}			2.0	V
TX Differential Input Voltage (p-p)	V _D	0.25		2.2	V
Power Supply Noise (p-p)	N _P			200	mV

SPECIFICATIONS COMPLIANCE

Requirement	Feature	Condition	Notes
RTCA / D0-160E	ESD	Class II	2200V
RTCA / D0-160E	Vibration	3.8g²/Hz	43G rms
RTCA / D0-160E	Shock	40.0g	6-9mS
RTCA / D0-160E	Flame Resistance	Method 1012	30 Seconds
RTCA / D0-160E	Damp Heat	10 Cycles	24 Hours
D38999	Mating Durability	500 Cycles	<0.5dB Change
FDA / CDRH / IEC-825-1	Eye Safety	Class 1	No Safety Interlocks Required

MATERIALS

Item	Detail	Notes
D38999 Shell	Aluminum	
D38999 Shell Finish	Electroless Nickel	
Insert	Arcap	
Ferrules	Ceramic	
Printed Circuits	Polyimide / FR-4	

Hercules Series D38999 Optical Transceiver, Gigabit Ethernet, Fibre Channel, ARINC 818 Applications, Multimode, 850nM

OPTICAL TRANSMITTERS T_A = Operating Temperature Range, V_{cc} = 3.135V to 3.465V

Parameter	Symbol	Minimum	Typical	Maximum	Unit
Optical Output Power (BER<10 ⁻¹² , PRBS= 2 ⁷ -1)	P。	-6.5		-1.0	dBm
Optical Output Wavelength	$\lambda_{_{OUT}}$	830	850	860	nM
Spectral Width	$\Delta \lambda_{\rm RMS}$			0.85	nM
Extinction Ratio	ER	9.0			dB

OPTICAL RECEIVERS T_A = Operating Temperature Range, V_{cc} = 3.135V to 3.465V

Parameter	Symbol	Minimum	Typical	Maximum	Unit
Optical Sensitivity (BER<10 ⁻¹² , ER=9.0) 125Mbps to 1.25Gbps 2.125Gbps 2.5Gbps to 3.19Gbps 3.2Gbps to 5.0Gbps	P,	-17.0 -15.0 -15.0 -14.0		0.0	dBm
Optical Wavelength	λ _{in}	830		860	nM

POWER SUPPLY CURRENT T_A = Operating Temperature Range, V_{cc} = 3.135V to 3.465V

Parameter	Symbol	Minimum	Typical	Maximum	Unit
Supply Current per each element	I _{CCT}		90	100	mA

OUTLINE DRAWING

Dimensions are shown as: inches (mm) Hercules Series D38999 Optical Transceiver, Gigabit Ethernet, Fibre Channel, ARINC 818 Applications, Multimode, 850nM

J3 Panel Cutout Dimensions Rear Panel Mounting Only											
J3 Shell Size Letter Code	Shell Size Number Code	M Min	P Holes	R Bsc							
G	21	1.410 (36.12)	0.159 (4.0) 0.149 (3.8)	1.250 (31.75)							

Hercules Series D38999 Optical Transceiver, Gigabit Ethernet, Fibre Channel, ARINC 818 Applications, Multimode, 850nM

SAMTEC HQDP-020			SAMTEC HQDP-020					SAMTEC HQDP-020								
	(20 PAIRS; 40) SIGN	ALS) 1		(20 PAIRS; 40	0 SIGN	IALS) 2			(20 PAIRS; 4	0 SIGN	IALS) 3	P	VIL-DTL-38999	WITH	QUAD MT
PIN	DESCRIPTION	PIN	DESCRIPTION	PIN	DESCRIPTION	PIN	DESCRIPTION		PIN	DESCRIPTION	PIN	DESCRIPTION	PIN	DESCRIPTION	PIN	DESCRIPTION
1	CH1 RX+	2	CH5 RX+	1	CH9 RX+	2	CH13 RX+		1	CH17 RX+	2	CH19 RX+	A1	CH1 TX	B1	CH1 RX
3	CH1 RX-	4	CH5 RX-	3	CH9 RX-	4	CH13 RX-		3	CH17 RX-	4	CH19 RX-	A2	CH2 TX	B2	CH2 RX
5	CH1 TX+	6	CH5 TX+	5	CH9 TX+	6	CH13 TX+		5	CH17 TX+	6	CH19 TX+	A 3	CH3 TX	B 3	CH3 RX
7	CH1 TX-	8	CH5 TX-	7	CH9 TX-	8	CH13 TX-		7	CH17 TX-	8	CH19 TX-	A4	CH4 TX	B4	CH4 RX
9	CH2 RX+	10	CH6 RX+	9	CH10 RX+	10	CH14 RX+		9	I2C SLC 1	10	CH20 RX+	A5	CH5 TX	B5	CH5 RX
11	CH2 RX-	12	CH6 RX-	11	CH10 RX-	12	CH14 RX-		11	I2C SDA 1	12	CH20 RX-	A6	CH6 TX	B6	CH6 RX
13	CH2 TX+	14	CH6 TX+	13	CH10 TX+	14	CH14 TX+		13	I2C SLC 2	14	CH20 TX+	A7	CH7 TX	B7	CH7 RX
15	CH2 TX-	16	CH6 TX-	15	CH10 TX-	16	CH14 TX-		15	I2C SDA 2	16	CH20 TX-	A 8	CH8 TX	B 8	CH8 RX
17	CH3 RX+	18	CH7 RX+	17	CH11 RX+	18	CH15 RX+		17	I2C SLC 3	18	CH21 RX+	A9	CH9 TX	B9	CH9 RX
19	CH3 RX-	20	CH7 RX-	19	CH11 RX-	20	CH15 RX-		19	I2C SDA 3	20	CH21 RX-	A10	CH10 TX	B10	CH10 RX
21	CH3 TX+	22	CH7 TX+	21	CH11 TX+	22	CH15 TX+		21	I2C SLC 4	22	CH21 TX+	A11	CH11 TX	B11	CH11 RX
23	CH3 TX-	24	CH7 TX-	23	CH11 TX-	24	CH15 TX-		23	I2C SDA 4	24	CH21 TX-	A12	CH12 TX	B12	CH12 RX
25	CH4 RX+	26	CH8 RX+	25	CH12 RX+	26	CH16 RX+		25	CH18 RX+	26	CH22 RX+	C1	CH13 TX	D1	CH13 RX
27	CH4 RX-	28	CH8 RX-	27	CH12 RX-	28	CH16 RX-		27	CH18 RX-	28	CH22 RX-	C2	CH14 TX	D2	CH14 RX
29	CH4 TX+	30	CH8 TX+	29	CH12 TX+	30	CH16 TX+		29	CH18 TX+	30	CH22 TX+	C3	CH15 TX	D3	CH15 RX
31	CH4 TX-	32	CH8 TX-	31	CH12 TX-	32	CH16 TX-		31	CH18 TX-	32	CH22 TX-	C4	CH16 TX	D4	CH16 RX
33	5V POWER	34	5V POWER	33	5V POWER	34	5V POWER		33	5V POWER	34	5V POWER	C5	CH17 TX	D5	CH17 RX
35	GROUND	36	GROUND	35	GROUND	36	GROUND		35	GROUND	36	GROUND	C6	CH18 TX	D6	CH18 RX
37	SPARE	38	SPARE	37	CH24 RX+	38	CH24 TX+		37	CH23 RX+	38	CH23 TX+	C7	CH19 TX	D7	CH19 RX
39	SPARE	40	SPARE	39	CH24 RX-	40	CH24 TX-		39	CH23 RX-	40	CH23 TX-	C8	CH20 TX	D8	CH20 RX
RIBBO	ON CONNECTOR	-		RIBBO	ON CONNECTOR	-			RIBBON CONNECTOR -							
QTH-	020-01-H-D-DP-E	M2		QTH-0	020-01-H-D-DP-E	EM2			QTH-020-01-H-D-DP-EM2				C9	CH21 TX	D9	CH21 RX
BOAF		-		BOAR	DCONNECTOR	-			BOAR	DCONNECTOR	-					
QSH-020-01-H-D-DP-K QSH-020-01-H-D-DP-K QS				QSH-	020-01-H-D-DP-I	ĸ		C10	CH22 TX	D10	CH22 RX					
BOARD CONNECTOR MUST BE USED WITH BOARD CONNECTOR MUST BE USED WITH BOARD CONNECTO				D CONNECTOR	MUST	BE USED WITH										
SO-01	L65-04-01-02 SCF	REW M	IOUNTS WITH	SO-01	65-04-01-02 SCF	REW N	IOUNTS WITH		SO-01	165-04-01-02 SCF	REW N	IOUNTS WITH				
CORR	ECT SPACING			CORR	ECT SPACING				CORR	ECT SPACING			C11	CH23 TX	D11	CH23 RX
													C12	CH24 TX	D12	CH24 RX

Hercules Series D38999 Optical Transceiver, Gigabit Ethernet, Fibre Channel, ARINC 818 Applications, Multimode, 850nM **TRANSMITTER APPLICATION SCHEMATIC** For Xilinx Rocket I/O Interfaces

Internal 4.7K Ω to 10.0K Ω pullup

JE Petrical determing to be in a second from a state to be provide town on the second part of the second in a second. However, the second provide town of a probability of the second part of the second pa

Hercules Series D38999 Optical Transceiver, Gigabit Ethernet, Fibre Channel, ARINC 818 Applications, Multimode, 850nM

RECEIVER APPLICATION SCHEMATIC

For Xilinx Rocket I/O Interfaces

For All LOS Functions: Satisfactory Optical Input: Logic "0" Output Unsatisfactory Optical Input: Logic "1" Output

192 Bob Fitz Road, Johnson City, TN 37615 salesmp@moog.com moogprotokraft.com

Product and company names listed are trademarks or trade names of their respective companies.

7